

Summary

REPORTING & COMMUNICATION

• Developing a common reporting scheme

DIALOGUE WITH OUR STAKEHOLDERS

• Environmental concerns in programmes and operations

Reporting and communication

KESPONSABILITE SOCIETALE

KPI for ESA's reporting on SD: Methodology

- Management systems
- Existing indicators

Generic Indicators

- Objectives and concerns
- Needed indicators and specific parameters

KPIs for ESA's reporting on SD: Overview

Deploy and assess, in an optimal way, the Agency's framework policy on SD objectives

2008-09

- •SD referential: an application of international SD standards to ESA's activity
- •30 SD criteria divided into 5 themes

2009-11

•First generation of KPIs Published in ESA Sustainable Development 2009-2010 Report (January 2011)

2011-13

•Second generation of KPIs and definition of concrete goals disclosed in ESA Sustainable Development 2011-2012 Report (issued in 2013)

2013-2015

- •Review and assessment of the implementation of the management goals of the KPIs
- •Creation of additional KPIs disclosed in ESA Sustainable Development 2013-14 report (issued in 2015)

KPIs review and assessment of management goals

GOV.8: Participate in European public policy development in the field of SD

Year	KPI-metrics	Concrete goal	Status
2011 12	Callabanation with Chates	Limite the miles of Ferman healter in	DIAN

GOVERNANCE				
REF.	MANAGEMENT GOAL	STATUS 2012	STATUS 2014	
* GOV.1	Ensure that the Agency has a sound governance framework for SD.	CHECK	DO	
* G0V.2	Ensure ESA Management System effectiveness, efficiency and integrity.	DO	DO	
G0V.3	Ensure effective independent audit functions.	ACT	ACT	

ENVIRONMENT

REF.	MANAGEMENT GOAL	STATUS 2012	STATUS 2014
* ENV.1	Perform studies with scientific community/technical experts.	DO	DO
* ENV.2	Protect space environment and reduce space debris risks.	CHECK	CHECK
* ENV.3 (new)	Develop technologies to protect space environment and reduce space debris risks.	-	DO
* ENV.4	Establish and implement a coordinated and harmonised EMS on all ESA sites.	D0	ACT
* ENV.5	Target Sustainable Building certification for new construction, refurbishment and maintenance.	PLAN/PLAN/PLAN	DO/PLAN/PLAN
ENV.6	Target raw energy reduction/efficiency management by planning and implementing coordinated actions with ESA users from all directorates.	DO	DO
ENV.7	Establish, conduct and implement policies on environmental impacts due to ESA non-programmatic operations.	CHECK	CHECK
* ENV.8	Comply with environmental requirements and legislation; anticipate their impacts.	CHECK	CHECK

Regarding structure and wording of the KPI the assessment remains unchanged. Nevertheless the status of the indicator changed from PLAN to DO showing increasing commitments in stakeholders dialogue.

SOCIAL				
REF. CID916	MANAGEMENT GOAL	CHECK	5TATU5 2012	STATUS 2014
* S0C.1	Develop employee competencies and knowledge,		ACT	ACT
500.2	Prevent and reduce work injuries and occupa	stional diseases.	CHECK	CHECK
SDC.3 (new)	Foster professional evolution.		*	CHECK
SDE.4 (new)	Promote equal opportunities.		- Utility	CHECK
50E.5 (new)	Develop and preserve social protection syste	m and good working conditions.	-	ACT
50C,6 (new)	Prevent and resolve social conflicts.			CHECK

1st SD report / 2009-10

Objectives

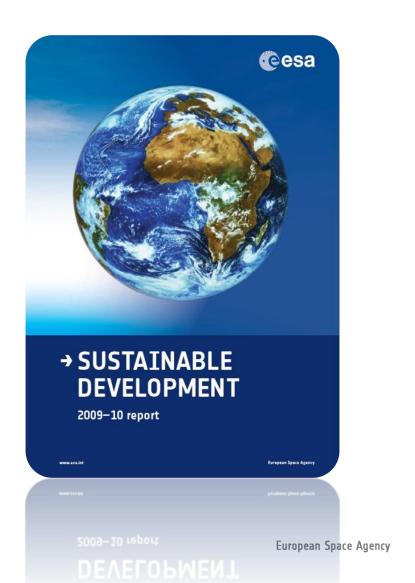
Map ESA's activities and programmes under the perspective of SD and creation of a first snapshot of specific KPIs

Invite to share information, common actions and knowledge among ESA professions

Launch synergies and possible joint SD projects with our stakeholders

Creation

Internal report first: adhesion of ESA staff and contractors to the project


Editorial committee composed by internal experts

Lessons learned

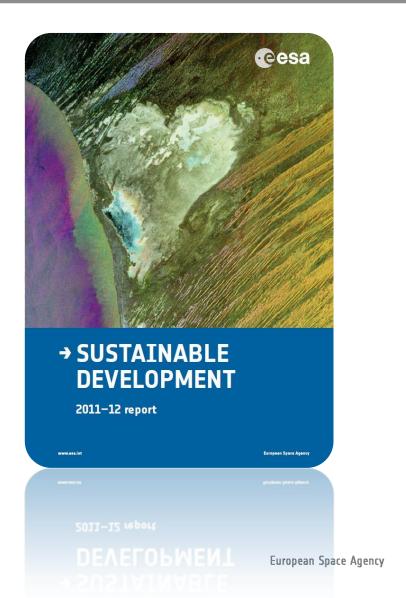
Interest from our stakeholders Legitimate our actions Clear objectives to be mentioned

Ariane Bouilly / Marion Mirailles | Headquarters | 12/11/2015 | Slide $\,\,7\,\,$

ESA UNCLASSIFIED - For Official Use

2nd SD report / 2011-12

Visual Identity


coherence communication rules

Structure

Structured by the KPIs
Deming Wheel to evaluate the status of the KPIs

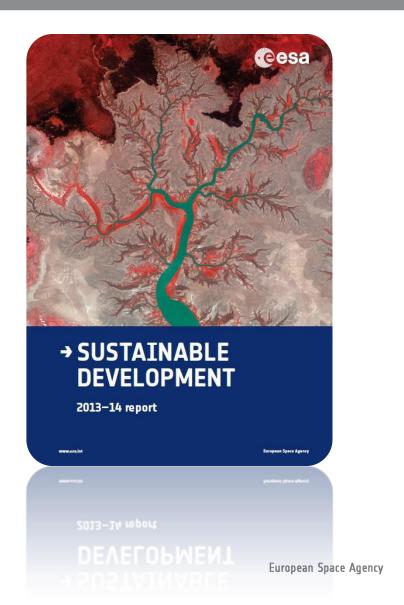
Interviews & testimonials

Personalisation

3rd SD report / 2013-14

Feedbacks

Feedbacks from stakeholders – integration of their comments


Institutionalisation of the report at corporate level (biennial exercise for the whole Agency and also in the sector)

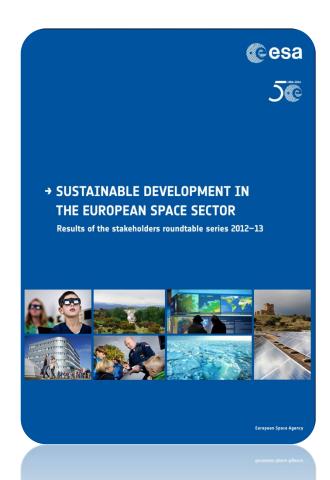
KPI review

Follow up the management goals in application on the Agency

Dialogue

Interactions with our stakeholders

Interactions with our stakeholders



European Space Agency

A dialogue activity started in 2012

At that time:

- Good vision about sustainability at ESA but
- no common reflection and network around sustainability in the space sector and
- will to have leading role in Europe in the sustainability field

Summary

REPORTING & COMMUNICATION

• Developing a common reporting scheme

DIALOGUE WITH OUR STAKEHOLDERS

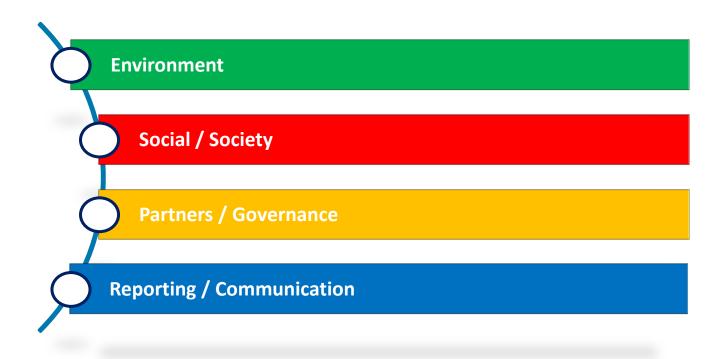
• Environmental concerns in programmes and operations

General objectives of the roundtable series

- <u>Build a platform of exchange</u> among actors from different sectors of activity with a strong SD policy on and experience in different sustainability topics.
- Include SD leaders in the discussion, with the expectation to <u>identify common</u>
 <u>approaches</u> and specific indicators for the space sector, as well as exchange on best practices and discuss potential for cooperation
- Assess how SD principles are being integrated into the space sector, identify concerns and potential solutions
 - Create, in the space sector, a systematic dialogue for cooperation on topics of interest

(environmental reporting, responsible procurement, technical and regulatory requirements -e.g. REACH EU Reg.-, transparency and ethics, etc.)

Overview of the roundtable series


- Actors from the space sector and from other sectors of activity but with a well implemented SD policy in their activity
 - 9 organisations from the space sector involved
 - 15 organisations from other sectors of activity involved
 - 5 delegations involved
- 7 local roundtables
 - SD in corporate strategy of leading companies
 - EMS and dedicated reporting
 - Responsible procurement and dedicated reporting
 - Governance, ethics and social policies
 - SD reporting and communication
 - Social policies and health & safety in an organisation
 - Environmental issues and the environmental performance of buildings
- 3 regional roundtables: Southern/Northern/Central & Eastern European countries
 - Space for sustainability / Sustainability in the space sector
- Workshop: "Developing a joint approach of sustainability in the European space sector"
 - Review of the roundtable series + working groups

Overview - main SD issues

Sustainability in the space sector

Space for sustainability

Environment
Social / Society
Partners / Governance
Reporting & Communication

EMS / sustainability performances for common and specific infrastructures

- Development of tools to deal with the EMS (common infrastructures)
- Buildings: construction / maintenance / refurbishments
 - International standards (ISO 14001)
 - Going far beyond the certification : having no negative impact
 - Buildings management is not only an environmental issue any longer, but also a social challenge
- Coordination of SD activities in space sector (LCA, communication, etc.):
 - shared issues i.e. energy consumption unpredictable due to periodical use (launches, astronauts trainings, etc.)
 - space debris issue
 - transportation of launch vehicles
 - use of substances and processes (REACH)

environment

Space

- EO support understanding and mitigating CC
- Technology transfer for sustainability problems
- Sustainability in outer space
- Regional specificities
 - Arctic (applications and Infrastructures)
 - Baltic (pollution control)
 - Urban planning: traffic / energy Performance of buildings / use space technologies for 3D modelisations
- "Blue" economy: beneficiates from EOP investments

Knowledge (and consciousness) of the environmental impacts of the sector / As well as how we affect the environment, the nature and environment has an impact on our performance, productivity, health and well-being

Focus on Environmental Management on sites at ESA

Ensuring the achievement of environment and energy goals

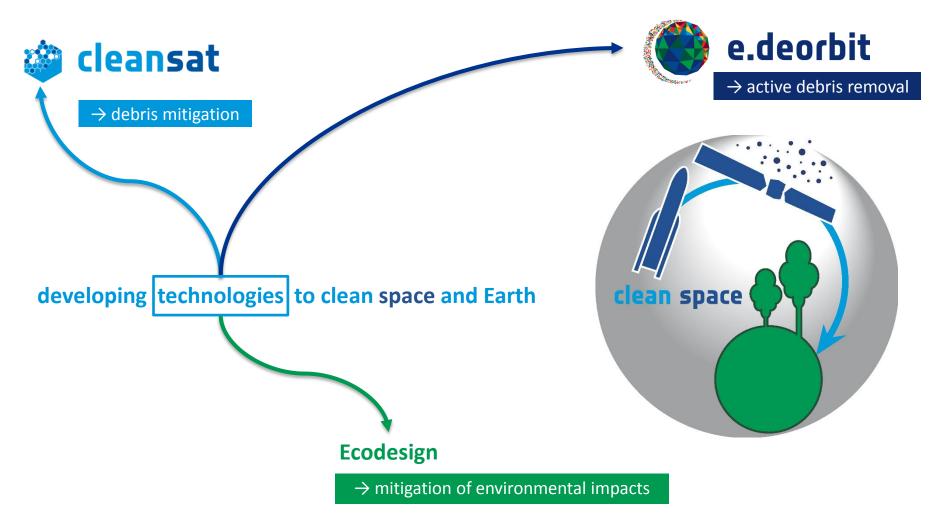
- Goal : The 20/20/20 target
 - Renewable energy
 - CO2 emissions
 - Energy efficiency
- Tools :
 - ISO 14001 certified EMS
 - Web-based Computer Integrated Facility Management
 - Guiding principles for sustainable construction, refurbishment and maintenance
 - Awareness campaigns
 - Environmental Impact Monitoring Project Initiative

O	Environment
	Social / Society
	Partners / Governance
	Reporting & Communication

EMS / sustainability performances for common and specific infrastructures

- Development of tools to deal with the EMS (common infrastructures)
- Buildings: construction / maintenance / refurbishments
 - International standards (ISO 14001)
- Going far beyond the certification : having no negative impact
- Buildings management is not only an environmental issue any longer, but also a social challenge
- Coordination of SD activities in space sector (LCA, communication, etc.):
- shared issues i.e. energy consumption unpredictable due to periodical use (launches, astronauts trainings, etc.)
- space debris issue
- transportation of launch vehicles
- use of substances and processes (REACH)

• EO support understanding and mitigating CC


- Technology transfer for sustainability problems
- Sustainability in outer space
- Regional specificities -
 - Arctic (applications and Infrastructures)
 - Baltic (pollution control)
 - Urban planning: traffic / energy Performance of buildings / use space technologies for 3D modellisation
 - "Blue" economy: beneficiates from EOP investments

Space for the environment

Knowledge (and consciousness) of the environmental impacts of the sector / As well as how we affect the environment, the nature and environment has an impact on our performance, productivity, health and well-being

Focus on ESA Clean Space Initiative

Ariane Bouilly / Marion Mirailles | Headquarters | 12/11/2015 | Slide 18

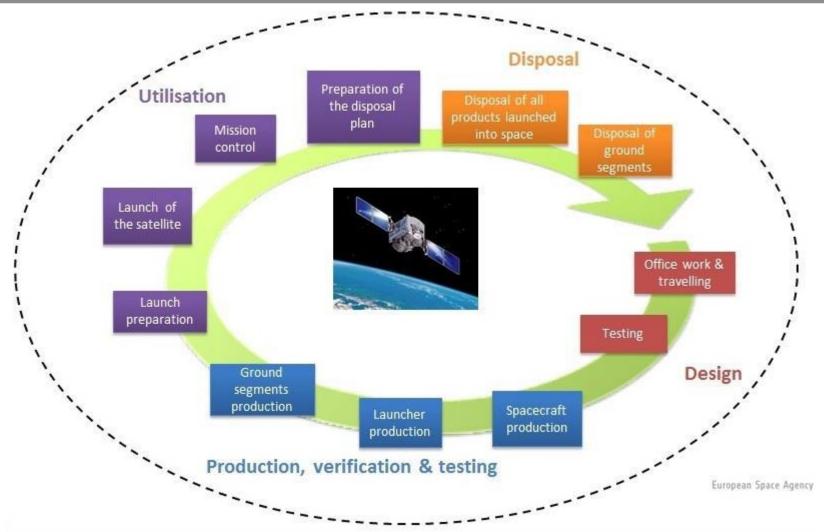
Clean Space Objectives

→ ENVIRONMENTAL PROTECTION

Complying with European environmental regulations and answering to European concerns leads to fast innovation and great competitiveness.

→ INNOVATION

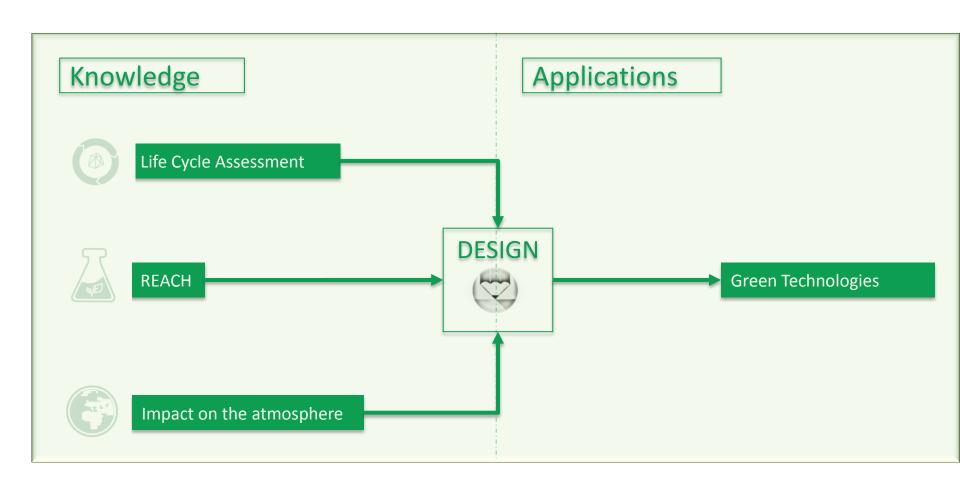
The need for technologies complying with environmental requirements <u>pushes for innovation</u>:


- New materials (e.g. citric acid, new processes)
- New designs (e.g. demisable tanks, sails)
- New capturing mechanism (e.g. net, harpoon)

→ COMPETITIVENESS

Technologies to cope with the environmental challenges and advanced regulations opens new markets to Europe. Clean Space <u>supports the European competitiveness by leading proactive</u> <u>research and development</u> on cleaner space technologies for Earth and space

LCA of a space mission



Ariane Bouilly / Marion Mirailles | Headquarters | 12/11/2015 | Slide 20

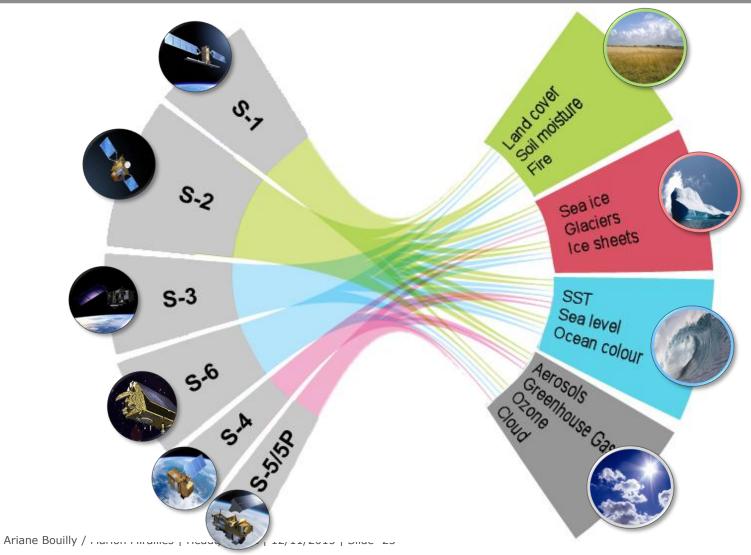
What is Eco-Design?

O	Environment
	Social / Society
	Partners / Governance
	Reporting & Communication

EMS / sustainability performances for common and specific infrastructures

- Development of tools to deal with the EMS (common infrastructures)
- Buildings: construction / maintenance / refurbishments
 - International standards (ISO 14001)
 - Going far beyond the certification : having no negative impact
 - Buildings management is not only an environmental issue any longer, but also a social challenge
- Coordination of SD activities in space sector (LCA, communication, etc.):
- shared issues i.e. energy consumption unpredictable due to periodical use (launches, astronauts trainings, etc.)
- Space debris issue
- transportation of launch vehicles
- use of substances and processes (REACH)

• EO support understanding and mitigating CC


- Technology transfer for sustainability problems
- Sustainability in outer space
- Regional specificities -
 - Arctic (applications and Infrastructures)
 - Baltic (pollution control)
 - Urban planning: traffic / energy Performance of buildings / use space technologies for 3D modelisations
 - "Blue" economy: beneficiates from EOP investments

Space for the environment

Knowledge (and consciousness) of the environmental impacts of the sector / As well as how we affect the environment, the nature and environment has an impact on our performance, productivity, health and well-being

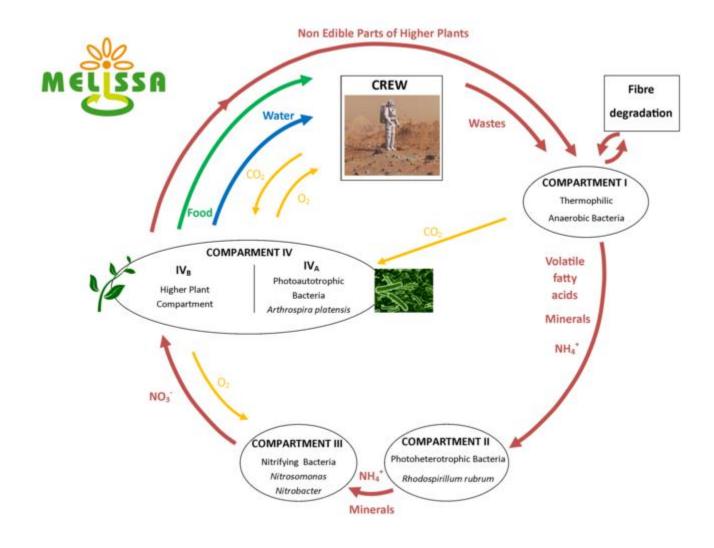
Copernicus programme and the Sentinel family for climate change monitoring

Environment
Social / Society
Partners / Governance
Reporting & Communication

EMS / sustainability performances for common and specific infrastructures

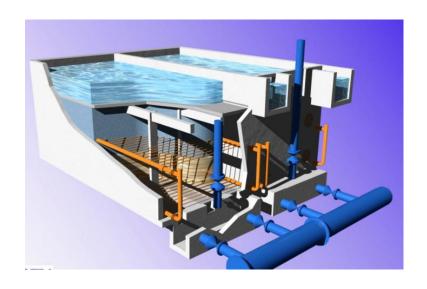
- Development of tools to deal with the EMS (common infrastructures)
- Buildings: construction / maintenance / refurbishments
 - International standards (ISO 14001)
- Going far beyond the certification : having no negative impact
- Buildings management is not only an environmental issue any longer, but also a social challenge
- Coordination of SD activities in space sector (LCA, communication, etc.):
- shared issues i.e. energy consumption unpredictable due to periodical use (launches, astronauts trainings, etc.)
- Space debris issue
- transportation of launch vehicles
- use of substances and processes (REACH)

• EO support understanding and mitigating CC


- Technology transfer for sustainability problems
- Sustainability in outer space
- Regional specificities -
 - Arctic (applications and Infrastructures)
 - Baltic (pollution control)
 - Urban planning: traffic / energy Performance of buildings / use space technologies for 3D modelisations
 - "Blue" economy: beneficiates from EOP investments

Space for the environment

Knowledge (and consciousness) of the environmental impacts of the sector / As well as how we affect the environment, the nature and environment has an impact on our performance, productivity, health and well-being


Water treatment plants using recent space technologies: MELiSSA

Water treatment plants using recent space technologies: MELiSSA

•	BIOSTYR® is a nitrifying/denitrifying
	support that allows the growth and
	retention of microbial population to
	assume the biologic depuration of waste
	waters.

•	This technology was developed to	for
	MELiSSA compartment 3	

Town	Flow m3/d	Town	Flow m3/d
Cergy	40 000	Roma	200 000
Nyborg	13 000	Lyon	85 000
Evreux	20 000	Alanya	28 000
Acheres	15 000	Colombes	240 000
Frederkshavn	10 000	Herford	33 000
Melun	16 000	Sarragoza	7 500

 Water treatment plants all over Europe use MELISSA expertise to clean wastewater.

Environment
Social / Society
Partners / Governance
Reporting & Communication

EMS / sustainability performances for common and specific infrastructures

- Development of tools to deal with the EMS (common infrastructures)
- Buildings: construction / maintenance / refurbishments
 - International standards (ISO 14001)
 - Going far beyond the certification : having no negative impact
 - Buildings management is not only an environmental issue any longer, but also a social challenge
- Coordination of SD activities in space sector (LCA, communication, etc.):
- shared issues i.e. energy consumption unpredictable due to periodical use (launches, astronauts trainings, etc.)
- Space debris issue
- transportation of launch vehicles
- use of substances and processes (REACH)

• EO support understanding and mitigating CC

- Technology transfer for sustainability problems
- Sustainability in outer space
- Regional specificities –
- Arctic (applications and Infrastructures)
- Baltic (pollution control)
- Urban planning: traffic / energy Performance of buildings / use space technologies for 3D modelisations
- "Blue" economy: beneficiates from EOP investments

Knowledge (and consciousness) of the environmental impacts of the sector / As well as how we affect the environment, the nature and environment has an impact on our performance, productivity, health and well-being

environment

Space

• Challenges of the sector:

- Promoting diversity in all aspects (gender, seniors, minorities, disabilities, etc.)
- Work-life balance
- Multicultural work environment
- Safety: launch pads: strict safety regulations , use of hazardous materials
- Employees' well-being should become a top priority for companies

Space for the society

- socio-economic benefits
 - Investments in space returning
 - Space seen from an utilitarian angle
 - Space seen from a trans-utilitarian perspective (fascination, identity, education)
- EO scientific data and space technologies and applications provide smart solutions for many sectors
- dependence on GNSS is increasing for essential activities (financial services, transport, security, critical infrastructures)

Stimulate stakeholders' involvement in concrete projects / Resistance towards change in administration / administrative issues / creating the "good global citizen" going far beyond environmental issues

Partners / Governance

Reporting & Communication

- An issue for the space sector: going towards a harmonised and integrated responsible procurement
- The quest for sustainability: an opportunity for the industry to create new competitive technologies
- Sustainability can also be an opportunity for the regional space industry
- Getting more contracts by complying with the increasing requests on environmental requirements
- Opportunities for SMEs (also in smaller MS)
- Being actors in sustainability (in space sector), can be an opportunity to strengthen the local industry's competitivity
- Regulations (REACH) can be an opportunity for green market development / stimulate R&D and innovation
- Regional cooperation is essential to avoid duplication of efforts and costs

•

responsible relations

for

pace

- Ethics considerations
 - Bribery
 - Human rights
 - The "good global citizen"
- The ISS: A model of good governance
- Pushing space solutions on Earth: space brings new technologies, for sustainable activities and also push for innovation (and business opportunities)
- Strict regulations and increasing expectations from stakeholders to reach international standards
- Enhance good practices to adapt to the market
- Need to work in close coordination with all actors

Ethics / transparency / cooperation / Accessibility to space data on open access, standardisation and long-term availability to serve sustainability purposes/ Being proactive in terms of SD (top down commitment: SD has to satisfy economic interests)

Reporting perspectives

- Why reporting?
- Common reporting for the sector ?
- Going (or not) to certification?
- Necessity of KPIs
- SD reporting as a tool for strengthening the European Space Policy
- Communication and reporting should go together and support each other

Space for reporting and communication

- Communication, important challenges:
 - Reach the end-user to use the space date to achieve SD challenges
 - Impact of space applications not enough known by potential users
 - Better communication to policy-makers and decision-makers
- Knowledge (and consciousness) of the impacts of the sector

If there is something special with the space sector: make it visible! / "Earth is our spaceship": part which is missing in the communication to large public about space. Having a wide perspective, to make it less conceptual and more concrete. Connect it to the human beings / SD reporting as a societal requirement but also as a policy tool

Thank you!